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Here,	 we	 highlight	 recent	 advances	 in	 our	 understanding	 of	 the	 psychological	 and	

neurobiological	 bases	 of	 negative	 emotionality	 or	 what	 we	 term	 dispositional	 negativity,	

one	 of	 the	 most	 intensely	 scrutinized	 dimensions	 of	 childhood	 temperament	 and	 adult	

personality.	 A	 primary	 focus	 of	 our	 essay	 concerns	 the	 processes	 linking	 enduring	

individual	differences	in	dispositional	negativity	to	momentary	emotional	experiences	and	

behaviors.	

	

Dispositional	Negativity		

Dispositional	 negativity—the	 tendency	 to	 show	 increased	 negative	 affect—is	 a	

fundamental	dimension	of	 temperament	and	personality,	 subsuming	a	range	of	narrower	

traits	(e.g.,	anxious	temperament,	behavioral	inhibition,	harm	avoidance,	neuroticism,	and	

trait	 anxiety;	 Caspi,	 Roberts,	 &	 Shiner,	 2005).	 Individual	 differences	 in	 dispositional	

negativity	 can	 be	 conceptualized	 as	 an	 extended	 family	 of	 complex,	 multi‐componential	

phenotypes	 that	 first	 emerge	 early	 in	 development,	 persist	 into	 adulthood,	 and	 reflect	 a	

combination	of	heritable	and	non‐heritable	factors	(A.	S.	Fox	&		N.	H.	Kalin,	2014;	Ormel	et	

al.,	 2013;	 Soto	 &	 John,	 2014).	 Key	 features	 of	 this	 family	 of	 phenotypes	 are	 expressed	

similarly	across	mammalian	species,	enabling	mechanistic	studies	(Kalin	&	Shelton,	2003).	

Dispositional	 negativity	 is	 stable,	 but	 not	 immutable,	 and	 can	 be	 increased	 by	 stress	 or	

decreased	by	cognitive‐behavioral	or	pharmacological	treatments,	raising	the	possibility	of	

targeted	interventions	(Barlow,	Sauer‐Zavala,	Carl,	Bullis,	&	Ellard,	2013).	

	

Trait‐State	Links	Inferred	from	Self‐Report	and	Behavior	
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Increased	Stressor	Reactivity		

Self‐report	 data	 indicate	 that	 individuals	 with	 elevated	 levels	 of	 dispositional	 negativity	

over‐react	to	a	variety	of	stressors.	They	report	exaggerated	negative	affect	in	response	to	

hassles	 and	 interpersonal	 conflicts	 in	 daily	 life	 (Suls	 &	 Martin,	 2005)	 and	 aversive	

challenges	 in	 the	 laboratory	 (Matthews,	Deary,	&	Whiteman,	2009).	Likewise,	 individuals	

with	a	more	negative	disposition	are	prone	to	exaggerated	behavioral,	psychophysiological,	

and	neuroendocrine	reactions	to	potential	 threat	(Oler,	Fox,	Shackman,	&	Kalin,	 in	press).	

These	findings	suggest	that	dispositional	negativity	represents	a	diathesis,	which	enhances	

the	likelihood,	magnitude,	or	duration	of	negative	affect	elicited	by	stressors.				

	

Increased	Negative	Affect	in	the	Absence	of	Immediate	Stressors		

Importantly,	 individuals	 with	 elevated	 dispositional	 negativity	 are	 also	 prone	 to	

exaggerated	negative	affect	 in	situations	where	potential	stressors	are	remote,	diffuse,	or	

absent.	This	kind	of	pervasive,	context‐independent	negative	affect	has	been	described	as	a	

tonic	 or	 endogenous	 effect	 of	 temperament,	 given	 the	 absence	 of	 clear	 stressors	 (Gross,	

Sutton,	&	Ketelaar,	1998;	Watson	&	Clark,	1984).	In	the	laboratory,	dispositionally‐negative	

individuals	 experience	more	 intense	 negative	 thoughts	 and	 feelings	 at	 ‘baseline’	 or	 after	

viewing	 emotionally‐neutral	 control	 stimuli	 (Gross	 et	 al.,	 1998).	 In	 daily	 life,	 they	

frequently	 experience	 elevated	 negative	 affect	 in	 comfortable,	 familiar	 settings.	 For	

example,	 Bolger	 and	 Schilling	 (1991)	 used	 statistical	 decomposition	 techniques	 to	

demonstrate	 that	 nearly	 60%	 of	 heightened	 negative	 affect	 in	 daily	 life	 reflects	 tonic	

differences	 in	 distress,	 in	 settings	where	 there	was	no	 clear	 concurrent	 source	of	 stress,	

more	 than	 double	 that	 attributable	 to	 individual	 differences	 in	 stressor	 reactivity	 or	
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stressor	exposure.	These	observations	indicate	that	context‐independent	negative	affect	is	

a	central	feature	of	dispositional	negativity.		

	

Increased	Stressor	Generation	and	Exposure		

Dispositionally‐negative	 individuals	 often	 behave	 in	 ways	 that	 generate	 hassles	 and	

promote	 social	 conflict.	 Increased	 stressor	 exposure,	 in	 turn,	promotes	more	 frequent	or	

intense	 negative	 affect.	 A	 variety	 of	 evidence	 shows	 that	 individuals	 with	 high	 levels	 of	

dispositional	 negativity	 experience	 more	 frequent	 adversities	 and	 conflicts,	 particularly	

those	of	an	interpersonal	nature	(Kendler,	Gardner,	&	Prescott,	2003;	Suls	&	Martin,	2005).	

Other	work	suggests	that	dispositionally‐negative	individuals	play	an	instrumental	role	in	

evoking	 interpersonal	 stress	 and	 rejection.	 Their	 friends	 and	 offspring	 report	 increased	

conflict	 (Berry,	 Willingham,	 &	 Thayer,	 2000;	 Hutteman	 et	 al.,	 2014),	 their	 romantic	

partners	 report	 reduced	 relationship	 security	 (Neyer	 &	 Voigt,	 2004),	 and	 their	 spouses	

report	reduced	relationship	satisfaction	(Malouff,	Thorsteinsson,	Schutte,	Bhullar,	&	Rooke,	

2010).	In	the	laboratory,	randomly‐assigned	social	partners	judge	dispositionally‐negative	

individuals	to	be	more	moody,	uncomfortable,	and	negative	(Creed	&	Funder,	1998).	This	

negativity	 begets	 negativity;	 random	 partners	 often	 respond	 with	 heightened	 criticism,	

contempt,	 and	 hostility	 (Creed	 &	 Funder,	 1998).	 This	 evocative	 effect	 may	 reflect	

dispositionally‐negative	individuals’	tendency	to	express	less	warmth,	be	less	responsive	to	

social	partners,	 escalate	negative	affect	during	conflict,	 and	engage	 in	 toxic	 interpersonal	

behaviors	(e.g.,	contempt	and	sarcasm;	Clark,	Kochanska,	&	Ready,	2000;	Wang,	Repetti,	&	

Campos,	2011).	Other	work	shows	that	interventions	targeting	these	kinds	of	maladaptive	

socioemotional	behaviors	reduce	conflict	and	rejection,	indicating	a	causal	role	(Snyder	&	
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Halford,	 2012;	 Taylor	 &	 Alden,	 2011).	 Taken	 together,	 these	 observations	 provide	

compelling	evidence	that	dispositionally‐negative	individuals	play	an	active	role	in	shaping	

their	social	environment	in	ways	that	increase	the	likelihood	of	negative	affect				

	

The	Neurobiology	of	Dispositional	Negativity	

Increased	Reactivity	to	Aversive	Laboratory	Challenges	

Neurobiological	 research	 corroborates	 the	 link	 connecting	 dispositional	 negativity	 to	

heightened	 stressor	 reactivity.	 Imaging	 studies	 show	 that	 dispositionally‐negative	

individuals	 are	 prone	 to	 increased	 or	 prolonged	 activation	 in	 the	 dorsal	 amygdala	 in	

response	 to	punctate,	 threat‐related	cues	 (Calder,	Ewbank,	&	Passamonti,	2011;	A.	S.	Fox	

&		N.	H.	Kalin,	2014;	Schuyler	et	al.,	2012)1.	Metabolic	activity	in	the	dorsal	or	central	(Ce)	

nucleus	 of	 the	 amygdala	 is	 stable	 over	 time	 and	 measurement	 context	 (i.e.,	 trait‐like),	

heritable,	and	associated	with	heightened	reactions	to	potential	threat	encountered	outside	

the	 scanner	 environment	 (A.	 S.	 Fox	 &	 	N.	H.	 Kalin,	 2014).	 Moreover,	 elevated	 amygdala	

activity	 appears	 to	 be	 a	 shared	 substrate	 for	 different	 phenotypic	 presentations	 of	

dispositional‐negativity	 (A.	 J.	 Shackman	 et	 al.,	 2013).	 Like	 the	 dispositional‐negativity	

phenotype,	increased	amygdala	reactivity	to	acute	threat:	(a)	predicts	the	development	of	

future	internalizing	symptoms	(Swartz,	Knodt,	Radtke,	&	Hariri,	2015),	(b)	is	heightened	in	

mood	and	anxiety	disorders	(Etkin	&	Wager,	2007;	Hamilton	et	al.,	2012),	(c)	is	increased	

by	 stress	 and	 adversity	 (Dannlowski	 et	 al.,	 2012),	 and	 (d)	 is	 decreased	 by	 cognitive‐

                                                 
1	Anatomically,	the	amygdala	is	poised	to	assemble	a	broad	spectrum	of	emotional	reactions	via	projections	to	
the	brain	regions	that	proximally	mediate	many	of	the	behavioral	(e.g.,	passive	and	active	avoidance),	
peripheral	physiological	(e.g.,	cardiovascular	and	neuroendocrine	activity),	and	cognitive	(e.g.,	vigilance)	
features	of	momentary	negative	affect	(Davis	&	Whalen,	2001;	Freese	&	Amaral,	2009;	Pessoa	&	Adolphs,	
2010;		A.	J.	Shackman	&	Fox,	in	press).	



AJ	Shackman	Dispositional	negativity			6	
 

behavioral	 and	 pharmacological	 treatments	 for	 anxiety	 and	 depression	 	 (Furmark	 et	 al.,	

2002;	Paulus,	Feinstein,	Castillo,	Simmons,	&	Stein,	2005).			

	

Work	in	animals	shows	that	the	amygdala	causally	contributes	to	negative	affect	elicited	by	

threat	(Oler,	Fox,	Shackman,	&	Kalin,	2016).	This	 is	consistent	with	observations	made	in	

humans	 with	 naturally‐occurring	 amygdala	 damage.	 For	 example,	 Patient	 SM,	 who	 has	

near‐complete	 bilateral	 destruction	 of	 the	 amygdala,	 shows	 a	 profound	 lack	 of	 fear	 and	

anxiety	when	exposed	 to	 frightening	movies,	haunted	houses,	 tarantulas,	 and	snakes	and	

consistently	 endorses	 low	 levels	 of	 dispositional	 negativity	 on	 standard	 self‐report	

measures	 (Feinstein,	 Adolphs,	 Damasio,	 &	 Tranel,	 2011).	 These	 data	 suggest	 that	

dispositionally‐negative	 individuals’	 heightened	 reactivity	 to	 threat	 and	 other	 kinds	 of	

stressors	reflects	larger	or	longer‐lasting	responses	in	a	distributed	neural	circuit	centered	

on	the	amygdala2.				

		

Trait‐like	Individual	Differences	in	Stressor	Reactivity	are	Discernible	at	Rest	

Although	most	human	neurobiological	research	has	 focused	on	reactivity	 to	acute	threat‐

related	 cues—faces,	 images,	 and	 so	 on—stable	 individual	 differences	 in	 threat‐reactivity	

can	also	be	discerned	in	the	brain’s	spontaneous	or	‘resting’	activity.	For	example,	monkeys	

with	 elevated	 amygdala	 activity	 at	 ‘baseline’	 (e.g.,	 in	 their	 home‐cage)	 show	 increased	

                                                 
2	Although	these	findings	highlight	the	contributions	of	the	amygdala	to	trait‐like	differences	in	threat	
reactivity,	it	is	by	no	means	the	only	relevant	region.	Mechanistic	and	imaging	work	highlights	the	important	
contributions	of	a	distributed	circuit	encompassing	the	anterior	hippocampus,	anterior	insula/orbitofrontal	
cortex,	and	periaqueductal	gray	(PAG)	(A.	S.	Fox	&	N.	H.	Kalin,	2014;	A.	S.	Fox,	Oler,	Shackman,	et	al.,	2015;	A.	
S.	Fox,	Oler,	Tromp,	Fudge,	&	Kalin,	2015;	A.	S.	Fox	et	al.,	2010;	A.	S.	Fox,	Shelton,	Oakes,	Davidson,	&	Kalin,	
2008;	Kalin,	Shelton,	&	Davidson,	2007;	Oler	et	al.,	2010;	A.	J.	Shackman	et	al.,	2013).	Like	the	amygdala,	
activity	in	each	of	these	regions	predicts	trait‐like	individual	differences	in	stressor	reactivity.	
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freezing	 and	 elevated	 levels	 of	 the	 stress‐sensitive	 hormone	 cortisol	 when	 threat	 is	

encountered	in	other	contexts	(A.	S.	Fox	et	al.,	2008).	Likewise,	humans	with	higher	levels	

of	 dispositional	 negativity	 show	 increased	 amygdala	 activity	 at	 rest	 (Canli	 et	 al.,	 2006).	

These	observations	suggest	 that	variation	 in	the	basal	activity	of	 the	amygdala	and	other	

regions	 of	 the	 brain	 (e.g.	 dorsolateral	 prefrontal	 cortex3)	 represent	 a	 diathesis	 for	

heightened	negative	affect	in	response	to	trait‐relevant	challenges.		

	

Altered	Resting	Activity—Traits	or	States,	Tonic	or	Reactive	Differences?	

The	 data	 reviewed	 in	 the	 prior	 section	 would	 seem	 to	 suggest	 that	 reactive	 features	 of	

temperament	 are	 embodied	 in	 the	 on‐going	 activity	 of	 the	 brain.	 Yet,	 it	 remains	 unclear	

whether	 alterations	 in	 ‘resting’	 activity	 reflect	 trait‐like	 differences	 in	momentary	 affect,	

fleeting	 states	 elicited	 by	 the	 novelty	 or	 stress	 of	 the	 experimental	 context,	 or	 some	

combination	 of	 the	 two.	 After	 all,	 most	 neurophysiological	 assays	 are	 intrusive	 and	 can	

elicit	substantial	negative	affect	(Törnqvist,	Månsson,	Larsson,	&	Hallström,	2006).		

                                                 
3	Relations	between	temperament	and	resting‐state	brain	activity	are	not	limited	to	the	amygdala—
dispositionally‐negative	monkeys,	children,	and	adults	also	show	greater	resting‐state	activity	in	the	
electroencephalogram	(EEG)	over	the	right	compared	to	the	left	prefrontal	cortex	(PFC)	(Oler	et	al.,	2016;	
Wacker,	Chavanon,	&	Stemmler,	2010).	Like	the	negative	phenotype,	individual	differences	in	resting	
prefrontal	EEG	asymmetry	emerge	early	in	life	and	are	relatively	stable	over	time,	reliable,	heritable,	and	
predictive	of	the	intensity	of	emotional	reactions	to	aversive	stimuli	(N.	A.	Fox,	Henderson,	Marshall,	Nichols,	
&	Ghera,	2005;	Smit,	Posthuma,	Boomsma,	&	De	Geus,	2007;	Towers	&	Allen,	2009;	Wheeler,	Davidson,	&	
Tomarken,	1993).	Like	the	dispositional‐negativity	phenotype,	resting	prefrontal	EEG	asymmetry:	(a)	
prospectively	predicts	the	first‐onset	of	mood	disorders	(Nusslock	et	al.,	2011),	(b)	is	exaggerated	in	patients	
with	anxiety	and	mood	disorders	(Thibodeau,	Jorgensen,	&	Kim,	2006),	and	is	normalized	by	anxiolytic	drugs	
(Oler	et	al.,	2016).	Furthermore,	direct	neurofeedback	manipulations	of	prefrontal	EEG	attenuate	negative	
affect	elicited	by	subsequent	exposure	to	aversive	stimuli	(Allen,	Harmon‐Jones,	&	Cavender,	2001).	With	the	
pharmacological	evidence,	this	suggests	that	the	neural	mechanisms	responsible	for	generating	this	
electrophysiological	marker	causally	contribute	to	trait‐like	individual	differences	in	threat	reactivity.	Recent	
efforts	to	pinpoint	the	source	of	the	scalp‐recorded	EEG	asymmetry	have	highlighted	the	importance	of	the	
dorsolateral	prefrontal	cortex	(dlPFC;	A.	J.	Shackman,	McMenamin,	Maxwell,	Greischar,	&	Davidson,	2009),	
consistent	with	this	region’s	well‐established	role	in	regulating	momentary	affect	(Buhle	et	al.,	2014).	
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More	 sophisticated	 psychometric	 analyses	 will	 be	 required	 to	 determine	 the	 relative	

contribution	of	traits	and	states	to	resting‐state	measures	of	brain	function	(Coan,	Allen,	&	

McKnight,	2006).	

	

‘Tonic’	Negative	Affect	May	Reflect	Heightened	Reactivity	to	Diffuse	Threat	

Self‐report	 data	 show	 that	 dispositionally‐negative	 individuals	 experience	 heightened	

negative	affect	in	the	absence	of	clear‐cut	stressors.	Although	this	could	reflect	a	direct	or	

endogenous	 effect	 of	 dispositional	 negativity	 on	 mood,	 a	 wealth	 of	 biological	 evidence	

suggests	 that	 it	 partially	 reflects	 a	 reaction	 to	 stressors	 that	 are	 uncertain,	 temporally	

remote	 (i.e.,	 occurred	 in	 the	 past	 or	may	 occur	 in	 the	 future),	 or	 psychologically	 diffuse	

(e.g.,	 a	 novel	 or	 mildly	 aversive	 experimental	 context)	 (Grupe	 &	 Nitschke,	 2013).	 For	

example,	 individuals	 with	 extreme	 dispositional	 negativity	 show	 elevated	 defensive	

responses	 (e.g.,	 startle)	 and	 experience	 elevated	 negative	 affect	 during	 periods	 of	 safety	

embedded	 within	 instructed	 fear	 paradigms	 (CS‐or	 inter‐cue	 interval);	 that	 is,	 in	 the	

periods	before	and	after	the	randomized	presentation	of	learned	threat	cues	(CS+)	(Barker,	

Reeb‐Sutherland,	 &	 Fox,	 2014).	 Conversely,	 anxiety‐reducing	 drugs	 selectively	 dampen	

sustained	negative	affect	elicited	by	uncertain	threat,	while	sparing	phasic	reactions	to	cues	

signaling	clear	and	 immediate	danger	(Bradford,	Shapiro,	&	Curtin,	2013).	These	 findings	

suggest	 that	apparently	endogenous	 increases	 in	negative	affect,	 as	described	 in	 the	self‐

report	 literature,	 likely	 reflect	heightened	sensitivity	 to	distal,	uncertain	stressors,	 rather	

than	a	fixed	or	‘tonic’	consequence	of	dispositional	negativity.			
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Mechanistic	work	 in	 rodents	 suggests	 that	 sustained	 levels	 of	 heightened	 negative	 affect	

reflect	the	central	extended	amygdala,	a	neural	circuit	encompassing	the	lateral	divisions	of	

the	Ce	and	bed	nucleus	of	 the	stria	 terminalis	(BST)	(A.	S.	Fox,	Oler,	Tromp,	et	al.,	2015).	

Consistent	with	this	view,	imaging	studies	show	that	dispositionally‐negative	monkeys	and	

humans	 are	marked	 by	 heightened	 activity	 in	 the	 extended	 amygdala	 during	 periods	 of	

diffuse	or	uncertain	threat	(A.	S.	Fox	et	al.,	2008;	A.	J.	Shackman	et	al.,	in	press;	Somerville,	

Whalen,	 &	 Kelley,	 2010).	 Furthermore,	 variation	 in	 BST	 activation	 and	 functional	

connectivity	 predict	 negative	 affect,	 freezing,	 skin	 conductance,	 and	 cortisol	 elicited	 by	

uncertain	 danger	 (Alvarez	 et	 al.,	 2015;	 Jahn	 et	 al.,	 2010;	 Kalin,	 Shelton,	 Fox,	 Oakes,	 &	

Davidson,	2005;	McMenamin,	Langeslag,	Sirbu,	Padmala,	&	Pessoa,	2014;	Somerville	et	al.,	

2013).	 Although	 this	 activity	 is	 often	 described	 as	 a	 ‘sustained’	 response	 to	 uncertain	

threat,	it	has	also	been	found	using	much	briefer	challenges	(<10	seconds;	Grupe,	Oathes,	&	

Nitschke,	 2013;	Mobbs	 et	 al.,	 2010),	 consistent	with	 the	 spill‐over	 effects	 found	 in	 fear‐

potentiated	startle	studies.	Collectively,	this	work	indicates	that	a	circuit4	centered	on	the	

extended	amygdala	is	a	key	substrate	for	the	kinds	of	context‐independent	negative	affect	

that	 characterize	 individuals	 with	 heightened	 levels	 of	 dispositional	 negativity	 (	A.	J.	

Shackman	&	Fox,	in	press)5.	

	

                                                 
4	Individual	differences	in	BST	activity	may	reflect	altered	communication	with	the	orbitofrontal	cortex	
(OFC).	Large‐scale	imaging	studies	in	monkeys	(n	=	592)	demonstrate	that	threat‐related	metabolic	activity	in	
the	OFC	is	heritable	and	predictive	of	trait‐like	differences	in	dispositional	negativity	(A.	S.	Fox,	Oler,	
Shackman,	et	al.,	2015).	Moreover,	selective	OFC	lesions	are	associated	with	decreased	passive	avoidance	of	
uncertain	threat	and	reduced	BST	activity	in	monkeys	(A.	S.	Fox	et	al.,	2010;	Kalin	et	al.,	2007),	paralleling	the	
consequences	of	naturally‐occurring	OFC	insults	for	BST	activity	in	humans	(Motzkin	et	al.,	2015).	
	
5	Deficient	filtering	of	threat‐related	information	from	fronto‐parietal	working	memory	circuits,	leading	to	
elevated	rumination	over	the	past	and	increased	worry	about	the	future,	may	also	contribute	to	context‐
independent	negative	affect	(Stout,	Shackman,	Johnson,	&	Larson,	2014;	Stout,	Shackman,	&	Larson,	2013).	
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Pervasive	Negative	Affect	May	Reflect	Stress‐Induced	Sensitization	

Self‐report	 data	 indicate	 that	 individuals	with	 a	more	 negative	 disposition	 tend	 to	 carry	

negative	affect	from	stressful	to	less	stressful	contexts	(Suls	&	Martin,	2005).	Imaging	work	

suggests	 that	 the	 amygdala	 could	 contribute	 to	 this	 spill‐over	 of	 negative	 mood	 via	 a	

process	 of	 stress‐induced	 sensitization.	 Indeed,	 there	 is	 evidence	 that	 brief	 exposure	 to	

acute	stressors	leads	to	sustained	increases	in	amygdala	activity	(Cousijn	et	al.,	2010)	and	

amplifies	 amygdala	 reactivity	 to	 threat	 (van	 Marle,	 Hermans,	 Qin,	 &	 Fernandez,	 2009).	

Acute	 stressors	 can	 produce	 even	 longer‐lasting	 changes—on	 the	 order	 of	 minutes	 to	

hours—in	 the	 functional	 connectivity	 of	 the	 amygdala	 (Vaisvaser	 et	 al.,	 2013;	 van	Marle,	

Hermans,	 Qin,	 &	 Fernandez,	 2010).	 Furthermore,	 these	 neural	 spill‐over	 effects	 are	

exaggerated	among	individuals	with	a	more	negative	disposition	(Everaerd,	Klumpers,	van	

Wingen,	Tendolkar,	&	Fernandez,	2015).	Sensitization	of	the	amygdala	following	exposure	

to	 stress	 could	 promote	 negative	 affect	 either	 directly,	 by	 enhancing	 reactions	 to	 mild	

threat	(Grillon	&	Charney,	2011),	or	 indirectly,	by	 increasing	the	 likelihood	that	attention	

will	be	allocated	to	threat‐related	information	(Gamer,	Schmitz,	Tittgemeyer,	&	Schilbach,	

2013;	MacLeod	&	Clarke,	2015).		

	 	

Increased	Stressor	Generation	and	Exposure	May	Reflect	Differences	in	the	Way	Social	

Cues	Are	Processed		

Self‐report	 data	 indicate	 that	 individuals	 with	 a	 more	 negative	 disposition	 are	 prone	 to	

behave	 in	 ways	 that	 evoke	 stress.	 Although	 the	 neurobiological	 mechanisms	 underlying	

this	 recursive	 Temperament—Environment—Affect	 relationship	 remain	 poorly	

understood,	it	 is	known	that	damage	to	the	amygdala	is	associated	with	heightened,	even	
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pathological	 levels	of	social	approach	and	trust	 	(Adolphs,	 in	press;	van	Honk,	Eisenegger,	

Terburg,	 Stein,	 &	 Morgan,	 2013).	 Conversely,	 imaging	 studies	 in	 neurologically‐intact	

adults	 indicate	 that	 amygdala	 activation	 is	 associated	 with	 increased	 suspicion	 and	 is	

sensitive	 to	 betrayal	 during	 economic	 bargaining	 games	 (Bhatt,	 Lohrenz,	 Camerer,	 &	

Montague,	 2012).	 These	 observations	 raise	 the	 possibility	 that	 differences	 in	 social‐

appraisal	 processes	 mediated	 by	 the	 amygdala	 contribute,	 at	 least	 in	 a	 distal	 way,	 to	

dispositionally‐negative	 individuals’	 tendency	 to	 experience	 relationship	 insecurity,	

express	less	warmth	and	reciprocity,	engage	in	active	and	passive	forms	of	avoidance,	and	

evoke	negative	reactions	from	social	partners.		

	

An	Integrative	Perspective	

Recent	 years	 have	witnessed	 the	 emergence	 of	 powerful	 tools	 for	 assaying	 emotion	 and	

brain	 function	 and	 new	 insights	 into	 the	 psychological	 and	 neurobiological	 bases	 of	

dispositional	negativity.		

	

First,	 there	 is	 clear	 evidence	 that	 dispositionally‐negative	 individuals	 respond	 more	

strongly	to	explicit	stressors	and	aversive	challenges.	Variation	in	threat‐reactivity	reflects	

stable	 individual	differences	 in	 the	sensitivity	and	 functional	 connectivity	of	a	number	of	

brain	regions,	including	the	amygdala.	These	differences	manifest	as	heightened	activation	

in	response	to	punctate	challenges,	but	they	are	also	evident	in	the	spontaneous,	on‐going	

activity	of	the	brain.	At	present,	it	remains	unclear	whether	temperament‐related	variation	

in	 resting‐state	 activity	 and	 connectivity	 reflects	 tonic	 differences	 in	 neurophysiology,	

momentary	states	precipitated	by	diffuse	threat,	or	some	combination	of	the	two.		
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Second,	individuals	with	elevated	dispositional	negativity	often	show	heightened	negative	

affect	in	contexts	where	stressors	are	diffuse,	remote,	or	absent.	Neurobiological	research	

suggests	that	this	reflects	alterations	in	a	neural	circuit	centered	on	the	extended	amygdala.	

Other	 work	 indicates	 that	 enduring	 stress‐induced	 changes	 in	 amygdala	 reactivity	 and	

functional	connectivity	may	contribute	to	the	spill‐over	of	negative	affect	across	contexts.		

	

Third,	 individuals	with	a	more	negative	disposition	tend	to	act	 in	ways	that	evoke	stress,	

increasing	 the	 likelihood	 of	 negative	 affect.	 Although	 the	 neurobiological	 mechanisms	

underlying	 stressor	 generation	 have	 received	 scant	 attention,	 the	 existing	 evidentiary	

record	highlights	the	potential	importance	of	circuitry	encompassing	the	amygdala.		

	

Of	 these	 three	 pathways,	 the	 tendency	 to	 experience	 sustained	 levels	 of	 heightened	

negative	 affect	 in	 response	 to	 diffuse,	 uncertain,	 or	 remote	 threat	 appears	 to	 be	 most	

central	 to	 dispositional	 negativity.	 The	 vast	 majority	 of	 negative	 affect	 experienced	 by	

dispositionally‐negative	individuals	in	daily	life	is	indiscriminate	and	cannot	be	attributed	

to	 clear	 and	 present	 stressors	 (Bolger	 &	 Schilling,	 1991;	Watson	 &	 Clark,	 1984).	 In	 the	

laboratory,	 heightened	 negative	 affect	 in	 safe	 contexts	 is	 generally	 more	 sensitive	 to	

differences	 in	dispositional	negativity	and	pathological	anxiety	than	that	elicited	by	overt	

threat	(Davis,	Walker,	Miles,	&	Grillon,	2010;	Duits	et	al.,	2015)	and	prospectively	predicts	

the	first	onset	of	anxiety	disorders	(Craske	et	al.,	2012).		
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This	 pervasive,	 context‐insensitive	 emotional	 bias	 likely	 reinforces	 other	 maladaptive	

components	 of	 the	 negative	 phenotype	 (e.g.,	 avoidance	 and	 hyper‐vigilance)	 and	 may	

promote	 the	 expression	 of	 maladaptive	 interpersonal	 behaviors	 that	 increase	 the	

likelihood	of	conflict,	alienation,	and	rejection.		

	

Conclusions	

Individual	 differences	 in	 dispositional	 negativity	 can	 have	 profound	 consequences	 for	

health,	wealth,	and	happiness	(Lahey,	2009).	The	work	that	we	have	reviewed	provides	an	

integrative	 framework	 for	 understanding	 the	 cascade	 of	 psychological	 and	 biological	

processes	 that	bind	dispositional	negativity	 to	momentary	emotional	 states,	 to	emotional	

disorders,	and	to	a	range	of	other	adverse	outcomes.			
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