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Abstract

■ Excessively choosing immediate over larger future rewards,
or delay discounting (DD), associates with multiple clinical con-
ditions. Individual differences in DD likely depend on variations
in the activation of and functional interactions between net-
works, representing possible endophenotypes for associated
disorders, including alcohol use disorders (AUDs). Numerous
fMRI studies have probed the neural bases of DD, but investi-
gations of large-scale networks remain scant. We addressed
this gap by testing whether activation within large-scale
networks during Now/Later decision-making predicts individ-
ual differences in DD. To do so, we scanned 95 social drinkers
(18–40 years old; 50 women) using fMRI during hypothetical
choices between small monetary amounts available “today” or
larger amounts available later. We identified neural networks
engaged during Now/Later choice using independent component
analysis and tested the relationship between component activa-

tion and degree of DD. The activity of two components during
Now/Later choice correlated with individual DD rates: A temporal
lobe network positively correlated with DD, whereas a
frontoparietal–striatal network negatively correlated with DD.
Activation differences between these networks predicted indi-
vidual differences in DD, and their negative correlation during
Now/Later choice suggests functional competition. A generalized
psychophysiological interactions analysis confirmed a decrease
in their functional connectivity during decision-making. The
functional connectivity of these two networks negatively
correlates with alcohol-related harm, potentially implicating
these networks in AUDs. These findings provide novel insight
into the neural underpinnings of individual differences in im-
pulsive decision-making with potential implications for addic-
tion and related disorders in which impulsivity is a defining
feature. ■

INTRODUCTION

Humans and other animals show a preference for imme-
diate versus future rewards (Rachlin, 2000; Mazur, 1987).
The behavioral economic principle of reward devaluation
as a function of time, commonly referred to as delay dis-
counting (DD), has been extensively studied in the lab-
oratory using intertemporal choice tasks in which
participants decide between smaller, sooner rewards or
larger, later rewards. In such tasks, individuals vary con-
siderably in their reward preference, demonstrating the
highly subjective nature of intertemporal decision-making.
A greater bias for sooner rewards, widely accepted as a
form of impulsivity, is associated with addictive disorders
(MacKillop et al., 2011; Monterosso et al., 2007; Reynolds,
2006; Kirby & Petry, 2004; Dixon, Marley, & Jacobs, 2003;
Bickel, Odum, & Madden, 1999; Kirby, Petry, & Bickel,
1999; Becker &Murphy, 1988), attention-deficit hyperactiv-
ity disorder (Wilson, Mitchell, Musser, Schmitt, & Nigg,
2015; Paloyelis, Asherson, & Kuntsi, 2009; Sonuga-Barke,
Sergeant, Nigg, & Willcutt, 2008; Barkley, Edwards, Laneri,
Fletcher, & Metevia, 2001), and eating disorders (Davis,
Patte, Curtis, & Reid, 2010; Weller, Cook, Avsar, & Cox,
2008). Therefore, an improved understanding of the neural

processes underlying individual differences in DD could
provide novel insight into disorders of impulsivity and
identify potential biomarkers and treatment targets.

The component processes supporting intertemporal
decision-making have been examined by a multitude of
noteworthy studies. For example, McClure and colleagues
(McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007;
McClure, Laibson, Loewenstein, & Cohen, 2004)
described two competing brain systems—a cognitive
control system and an impulsive system—whose relative
activity has been construed to predict choice behavior on
a trial-by-trial basis. Other investigators posit a single valua-
tion network that represents the subjective value of reward
choices (Monterosso & Luo, 2010; Kable & Glimcher,
2007). Still, others emphasize the role of several neural net-
works that each contribute to different aspects of DD
behavior, including cognitive control, valuation, prospec-
tion, and emotion processes (van den Bos & McClure,
2013; Peters & Büchel, 2011). The variations in activation
and functional interactions between these various systems
are proposed to underlie individual differences in DD
behavior (Peters & Büchel, 2011; Boettiger et al., 2007).
Crucially, the identification of neural systems that predict
the degree of DD across individuals could offer potential
intermediate phenotypes of disorders of impulsivity.University of North Carolina
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Previous work suggests that individual differences in
impulsive decision-making correlate negatively with vari-
ations in fMRI activation in prefrontal and anterior cingu-
late cortical regions proposed to support executive
control processes (Stanger et al., 2013; Peters & Buchel,
2010; Ballard & Knutson, 2009; Boettiger et al., 2007) and
positively with the ventral striatum and medial-temporal
lobe structures proposed to underlie reward motivational
processes (Stanger et al., 2013; Boettiger et al., 2007;
Hariri et al., 2006). Despite the emphasis on neural sys-
tems and networks of brain regions in the published lit-
erature, most previous studies have focused on standard
univariate voxel-wise or ROI-based analytical approaches
and multivariate investigations of large-scale neural net-
works contributing to individual differences in DD in
healthy adults remain lacking. On the basis of the existing
literature, we hypothesized that individual differences in
DD would be predicted by at least two sets of brain re-
gions: Greater activation of a network of prefrontal brain
regions implicated in cognitive control would associate
with less impulsive decision-making, whereas greater ac-
tivation of a network primarily consisting of subcortical
regions implicated in reward motivational processes
would associate with more impulsive decision-making.

To test this hypothesis, we scanned 95 healthy adults
using fMRI while they performed a DD task in which they
made numerous choices between smaller amounts of
hypothetical money “today” or larger amounts available
later. We employed independent component analysis
(ICA) to identify large-scale neural networks engaged
during intertemporal choice and tested the relationship
between component activation and individual differences
in choice behavior. We identified two neural systems in
which activity during intertemporal choices significantly
correlated with the degree of DD across participants: A
medial and lateral temporal lobe network positively cor-
related with immediate reward bias, whereas a frontal–
parietal–striatal network correlated negatively with
immediate reward bias, consistent with our hypothesis.
Furthermore, negative correlations in task-related func-
tional connectivity between these two systems suggest a
competing functional relationship. Overall, our results sug-
gest that enhanced recruitment of a temporal lobe network
in lieu of a functionally competitive frontal–parietal–striatal
network is associated with disadvantageous decision-
making. Such perturbations in the activity and connectiv-
ity of neural networks supporting individual differences
in intertemporal decision-making may contribute to
pathological behaviors, such as substance misuse.

METHODS

Participants

Healthy adult (aged 18–40 years, mean age = 25.9 years)
participants (n = 95; 50 women) were recruited from the
University of North Carolina, Chapel Hill, campus and
surrounding communities. The participant sample was

62% White, 15% Black, 11% Asian, 4% Hispanic, and 8%
mixed or other race. Participants had completed an aver-
age of 16.3 ± 2.5 years of education. Social status as a
proxy for socioeconomic status was characterized by
the Barratt Simplified Measure of Social Status (Barratt,
2006), and the sample average was 50.0 ± 12.4 (range =
8–66) of a possible range of 8–66. Exclusion criteria
included use of psychoactive drugs or medication (exclud-
ing moderate alcohol or caffeine intake) and a neurological
or psychiatric diagnosis, including history of treatment for a
substance use disorder or a lifetime history of alcohol or
other drug dependence, based on a structured clinical in-
terview usingDiagnostic and Statistical Manual of Mental
Disorders (4th ed.) criteria (Sheehan et al., 1998). All par-
ticipants were native English speakers, were right-handed,
and had at least a high school education (or equivalent).
Participants were screened for drug or alcohol use on the
day of the scan via breathalyzer test and urine drug screen.
Each participant provided written informed consent as
approved by the University of North Carolina Office of
Human Research Ethics.

Alcohol Use Data

Although this study included only healthy control partic-
ipants, the primary motivation for this investigation was
to identify potential intermediate phenotypes of alcohol
use disorders (AUDs). Therefore, each participant com-
pleted the Alcohol Use and Disorders Identification Test
(AUDIT; Saunders, Aasland, Babor, de la Fuente, & Grant,
1993) to provide measures of alcohol consumption,
harmful alcohol use, and alcohol dependence symptoms.
Although no participants met criteria for an AUD, all
participants reported having consumed alcohol at least
once, and alcohol consumption levels ranged from low
to heavy, based on AUDIT consumption subscale scores.

DD Task

Participants performed a DD task designed for use in the
MRI scanner (Boettiger, Kelley, Mitchell, D’Esposito, &
Fields, 2009; Boettiger et al., 2007) and described in de-
tail previously (Smith, Steel, Parrish, Kelm, & Boettiger,
2015; Smith, Sierra, Oppler, & Boettiger, 2014; Kelm &
Boettiger, 2013; Smith & Boettiger, 2012; Altamirano,
Fields, D’Esposito, & Boettiger, 2011). Participants were
given task instructions, completed a short practice, and
then completed six blocks of 42 trials each (∼8 min in
length). In each trial, participants were asked to select
one of two presented options, a smaller, immediate mon-
etary reward (Now) or a larger, delayed reward (Later).
Selections were indicated by pressing one of two buttons
on an MRI-compatible response box. Each trial began
with an instruction cue, followed by a screen presenting
the Now and Later options. Later options were hypothet-
ical monetary rewards of $2, $5, $10, $20, or $100 at one
of five future delays (1 week, 2 weeks, 1 month, 3 months,
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or 6 months), whereas the Now option was reduced by
30%, 15%, 10%, or 5% from the Later amount and was avail-
able today. Later option delays and amounts, as well as the
Now option “discount” and left/right position, were ran-
domized across trials. Each choice trial was preceded by
an instruction cue presented for 4.4 sec to indicate one
of four choice trial types: WANT, DON’T WANT, SOONER,
or LARGER. For WANT trials, participants chose their pre-
ferred option. In the DON’T WANT trials, participants se-
lected the option that they did not prefer. SOONER and
LARGER trials represented objective choice control
(CON) trials in which participants indicated which option
was available sooner in time or which reward was larger,
respectively. In addition to the chosen option, we also col-
lected the RT for each response. Accuracy in CON trials ver-
ifies adherence to task instructions, and comparison of RT
between the CON, WANT, and DON’T WANT trials indi-
cates whether additional cognitive processes are being en-
gaged in the WANT and DON’T WANT conditions, relative
to the simple objective comparisons required in CON trials.
The options appeared on the screen for 4.4 sec and were
followed by a jittered intertrial interval of 4.4–8.8 sec; the
instruction cue remained on the screen during this time.
During “null” trials, the instruction cue was presented,
but no choice options were presented. WANT trials com-
prised 50% of the choice trials, whereas the other 50%
were divided equally among DON’T WANT, SOONER,
and LARGER trials, with trial type pseudorandomly ordered
across trials.

Task Behavioral Measures

As the primary measure of impulsive decision-making, an
impulsive choice ratio (ICR; Mitchell, Fields, D’Esposito,
& Boettiger, 2005) was calculated as the proportion of
Now choices made in the WANT condition. Higher ICR
values indicate more impulsive decision-making. Al-
though the DD paradigm used in this study was not de-
signed to optimally estimate model-based discounting
rates, we present secondary analyses for which the degree
of impulsive choice was quantified using the q-exponential
discount function based on Tsallis’ statistics (Takahashi,
2009; Takahashi, Oono, & Radford, 2008),

Discounted Value Dð Þ ¼ 1= 1þ 1−qð ÞkqD
� �1= 1−qð Þ

(1)

where D represents delay time and kq and q are measures
of impulsivity and inconsistency across delay times, respec-
tively. To estimate kq and q, we conducted nonlinear curve
fitting with the Levenberg–Marquardt algorithm imple-
mented in R (R Core Team, 2014) with the minipack.lm
package (Elzhov, Mullen, Spiess, & Bolker, 2015). Dis-
counted value was calculated as the cumulative selected/
maximum dollar ratio at each delay D (Smith et al., 2014,
2016). Higher values of kq indicate greater discounting of
delayed rewards (more impulsivity), and lower values of k

indicate less delayed reward discounting (less impulsivity).
On the basis of a threshold of R2 > .2, the q-exponential
model failed to adequately fit the data of n = 43 partici-
pants. Therefore, for the secondary analyses that consid-
ered the kq metric, only participants for whom the model
was deemed valid were included. All primary analyses
utilized the ICR metric and included all 95 participants.

MRI Data Acquisition

Task fMRI data sets were acquired as T2*-weighted images
(EPI) on a Siemens 3-T Tim Trio MRI whole-body scanner
equipped with a transverse electromagnetic send–receive
radio-frequency head coil, using a 1-shot gradient-echo
EPI pulse sequence to measure localized BOLD contrast.
Acquisition parameters were as follows: repetition time =
2000 msec, echo time = 25 msec, flip angle = 50°, 35 slices
tilted by 30° from the horizontal plane, field of view =
192 × 192 mm, voxel size = 3 × 3 × 4 mm with a 0.5-mm
gap, and matrix = 64 × 64. The fMRI acquisition was
preceded by 11 sec of dummy gradient radio-frequency
pulses to achieve steady-state tissue magnetization and
minimize startle-induced motion. The duration for each
run acquisition was approximately 9 min (243 frames). Low-
resolution T1-weighted coplanar images were acquired for
each participant. In addition, a high-resolution magnetiza-
tion prepared rapid gradient-echo (MPRAGE) T1-weighted
structural image was acquired from each participant for
alignment and tissue segmentation purposes. TheMPRAGE
pulse sequence parameters were as follows: repetition
time = 2530 msec, echo time = 2.27 msec, flip angle =
9°, matrix = 176 × 512, 512 slices, and final resolution =
1 × 0.5 × 0.5 mm3. Head movement during the scanning
session was restricted through the placement of padding
tominimize confounding effects on image quality. E-Prime 2
software (Psychology Software Tools, Inc., Pittsburg, PA)
synchronized the stimulus display to the fMRI acquisition
and recorded participant responses via an MRI-compatible
fiber-optic keypad. An LCD projector (Avotec, Inc., Stuart,
FL) projected visual stimuli onto a rear projection screen,
which the participants viewed via a mirror mounted within
the head coil.

MRI Data Preprocessing

The data were processed offline using the Analysis of Func-
tional Neuroimages (AFNI Version 16.0.13; Cox, 1996) soft-
ware and included the following steps: slice time correction,
reorientation of oblique slices to the axial plane, realignment
of images, despiking of noise time points, alignment to the
participant’s T1 image, warping to a Montreal Neurological
Institute template, removal by regression of signal from
white matter and cerebral spinal fluid as well as the six mo-
tion covariates, linear detrending, Gaussian smoothing with
an 8-mm FWHM smoothing kernel, and scaling to percent
signal change. The Artifact Detection Tools toolbox (www.
nitrc.org/projects/artifact_detect) was used to identify time
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pointswith high amounts of noise according to headmotion
and global signal intensity measures.

General Linear Modeling of Task Activations

Task-related activation was detected from the fMRI task de-
signmatrix produced using the SPM8 software and analyzed
using a general linear modeling (GLM) approach (Friston
et al., 1994) conducted with restricted maximum likelihood
estimation in 3dREMLfit in AFNI. Task cues were modeled
as delta functions, and decision-making periods were mod-
eled as short epochs with their onset at the time the Now
and Later options appeared and a duration equal to the trial-
specific RT. The six fMRI runs were concatenated to form a
single data set. Zero-, first-, and second-order polynomial
regressors were specified for each of the six runs to remove
trends within and between runs. Six head motion parame-
ters as well as covariates denoting outlier time points based
on the Artifact Detection Tools analysis were also included
in the GLM. Beta estimates from WANT trials were con-
trasted with those from CON trials to isolate activity specific
to making subjective intertemporal reward choices.

Voxel-wise Relationships with Behavior

Voxel-wise statistical analyses utilized a permutation-
based method that is robust against departures from
statistical assumptions required for parametric tests, pro-
vides stringent protection against false positives (α =
.05), and provides comparable or improved Type II error
rates over other methods (Huang et al., 2015). The main
effect of task was examined using the WANT > CON con-
trast maps of all 95 participants calculated from estima-
tions of brain activation using 3dDeconvolve and
3dREMLfit in AFNI; the analysis covaried for age and
sex. The neural correlates of individual differences in im-
pulsive choice were similarly calculated in a voxel-wise
permutation test of the relationship between ICR and
WANT > CON contrast values, covarying for age and sex.
These voxel-wise analyses provided results that enable
direct comparisons with the existing literature and against
which the findings of the network-level analysis could be
validated and interpreted.

ICA Approach

ICA is a data-driven method for data reduction that has
been adopted for use with fMRI data to derive spatially
independent brain networks of functionally connected
voxels (Calhoun, Adali, Pearlson, & Pekar, 2001). Data re-
duction for group fMRI data is often a multistep process to
reduce individual participant 4-D (spatial and temporal)
data into 3-D principal components, and then, an ICA is
performed on concatenated principal components to
provide a group result. Components resolved in this fash-
ion from resting-state data are purported to represent in-
trinsic connectivity networks; however, this approach

carries several limitations for task fMRI data. Because
components derived from task-related fMRI time series
comprise multiple brain states (i.e., passive fixation, task
cues, control trials, experimental trials), the interpretation of
components derived from such data is not straightforward.
Although these components can be related back to specific
task conditions using back reconstruction methods, GLM,
and statistical contrasts (Stanger et al., 2013), the spatial
organization of the components is influenced by all con-
stituents of the task regardless of their relevance for the
specific task condition or psychological construct of interest.
For this study, we sought to examine the neural sys-

tems underlying intertemporal reward decision-making.
As such, the WANT > CON contrast maps derived from
the voxel-wise GLM analysis (Figure 1A) were entered in-
to an ICA to identify networks of brain regions specific to
this decision-making process that covary across individ-
uals (Figure 2A). Thus, rather than using a multistep pro-
cess to identify group components from fMRI time series,
we derived components in a single step using the con-
trast maps from all 95 participants. The ICA was conduct-
ed with the GIFT group ICA toolbox (v3.0a; Calhoun
et al., 2001) using the Infomax algorithm following vari-
ance normalization. We ran 20 ICASSO iterations in a se-
ries of analyses solving for 25, 20, 15, or 10 components
and determined that solving for 10 components yielded
the tightest clustering of results across iterations, sug-
gesting good stability. Thus, we conducted our analysis
using 10 independent components. We visually inspected
the 10-component spatial maps to identify those repre-
senting obvious artifacts, resulting in the removal of three
components: two for which peak values were around the
outside edges of the brain and one that was focused in
the ventricles.
Next, we calculated the degree of task-related activa-

tion of each of the remaining seven components across
participants. The relationship of each component to in-
tertemporal reward decision-making was tested by
regressing component maps on each participant’s
WANT > CON contrast maps (Figure 1C) as an alterna-
tive to estimating this relationship with GLM analyses of
component time series (James, Tripathi, & Kilts, 2014).
The resulting contrast estimates were mean and variance
normalized by converting them to z scores.

Network Activation Relationships with Behavior

A group level statistical measure of WANT > CON com-
ponent activation was calculated by one-sample t test of
contrast estimates across all 95 participants. In addition,
the relationship between individual differences in decision-
making and task-related component activation was tested
using Spearman’s partial correlation between ICR and
contrast estimates for each component, controlling for
age and sex. Results were corrected for multiple compari-
sons using a false discovery rate correction (Benjamini &
Yekutieli, 2001).
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RESULTS

Behavioral Data

We quantified individual DD tendency as the ratio of Now
options selected in the WANT condition, relative to all
choices made in the WANT condition (Mitchell et al.,
2005), which we refer to as the ICR. Participants in this
sample demonstrated the full range of ICR values (i.e.,
0–1) with a mean value of 0.62 (Q1 = 0.35, Q2 = 0.71,
Q3 = 0.92). As a DD index, ICR has the advantage of very
strong internal reliability (Smith et al., 2015, 2016),
coupled with the fact that ICR avoids the assumptions

of model-based metrics. In contrast, indices derived from
temporal discounting models, such as temporal discount
rates (k), are influenced by the assumptions of the partic-
ular model employed, and some participants’ data may
not conform to these assumptions. This DD task includes
objective choice control (CON) trials that allow us to verify
participants’ adherence to task instructions in two ways.
First, we verified high accuracy in CON trials (mean =
96.1 ± 5.4%). Second, we compared RTs between the
WANT and CON conditions, which indicates whether ad-
ditional cognitive processes are engaged in the WANT con-
dition, relative to the simple objective comparison needed

Figure 2. Voxel-wise statistical
relationships. (A) Results of the
voxel-wise test of the main
effect of task (WANT > CON
contrast) corrected for multiple
comparisons (α = .05) using
permutation testing. (B) The
voxel-wise relationship between
individual ICR and activation
during subjective intertemporal
decision-making (WANT >
CON contrast), unthresholded
for visualization purposes.
(C) The voxel-wise relationship
between ICR and activation
during subjective intertemporal
decision-making, as in B,
but corrected for multiple
comparisons (α = .05)
using permutation testing.
W = Wald statistic.

Figure 1. Schematic diagram of
ICA approach. Voxel-wise maps
of the WANT > CON contrast
from 95 participants (A) were
entered into an ICA solving for
10 independent components
(B). (C) Component maps
were then regressed on each
participant’s WANT > CON
contrast maps to obtain
estimates of the relationship
of each component to the
contrast for each participant;
these participant level contrast
estimates were entered into
group level analyses
represented by Table 2 and
Figures 3 and 4.
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in CON trials (mean WANT-CON RT difference: = 588 ±
358 msec). In this study, n = 8 participants were excluded
from all analyses because of insufficient CON trial accuracy
and/or equivalent RTs in the WANT and CON trials, yield-
ing the final sample of 95 participants.

ICA of Activity during Subjective
Intertemporal Choice

To identify large-scale networks engaged during subjective
intertemporal choice, we first generated whole-brain con-
trasts of activity associated with choice evaluation in the
WANT and CON trials (WANT > CON contrast) for each
participant (Figure 1A). We next tested the main effect of
task on these contrast maps (Figure 2A), which closely
matched findings reported by previous studies (Bickel,
Pitcock, Yi, & Angtuaco, 2009; Monterosso et al., 2007).
Statistical maps depicting the voxel-wise relationship be-
tween ICR and activity during subjective intertemporal
decision-making (WANT > CON contrast) are shown both
unthresholded (Figure 2B) and thresholded based on
permutation tests (Figure 2C). As shown in Figure 2C

and detailed in Table 1, ICR positively correlated with en-
hanced activity during subjective choice in a multitude of
regions, including clusters in the medial-temporal lobe
(i.e., amygdala, hippocampus, parahippocampal gyrus),
superior frontal gyrus, retrosplenial cortex, and cerebel-
lum. In contrast, ICR negatively correlated with activity
during subjective intertemporal decision-making in the
dorsal ACC, right lateral frontal and parietal cortices, and
caudate tail.
The ICA identified seven physiologically relevant net-

works that covaried across participants during inter-
temporal decision-making (Figure 3A). Three obviously
artifactual components, numbered 1, 2, and 7, were ex-
cluded from further analyses (see Methods). The statistical
association of each component with the WANT > CON
contrast based on one-sample t test is reported in Table 2.
Three networks demonstrated significant activation during
subjective choice (Components 3, 4, and 8; Figure 3, red
bounding box), and three others showed significant de-
activation during subjective choice (Components 5, 6,
and 10; Figure 3, blue bounding box). Moreover, of the
seven components, two significantly correlated with ICR

Table 1. Voxel-wise Correlates of the ICR

ICR Correlation Label x y z # Voxels

Positive Left superior frontal gyrus −23 31 42 70

Left retrosplenial cortex −9 −47 7 35

Left amygdala −12 −12 −15 29

Right parahippocampal gyrus 30 −33 −11 24

Left hippocampus −30 −33 −11 24

Left parahippocampal gyrus −19 −36 −15 20

Right retrosplenial cortex 12 −43 3 17

Left middle cingulate gyrus −9 −40 35 12

Right superior frontal gyrus 16 41 45 9

Left putamen −16 3 −8 7

Left superior occipital gyrus −37 −75 28 5

Left cerebellum −9 −43 −46 3

Left cerebellum −12 −75 −43 2

Right superior frontal gyrus 16 34 35 2

Left superior temporal gyrus −43 −36 6 1

Left superior frontal gyrus −9 62 17 1

Right cerebellum 42 −63 −39 1

Negative Right precentral gyrus 40 −5 35 32

Right supramarginal gyrus 47 −43 35 5

Left dorsal ACC 12 3 38 2

Left caudate tail −19 −29 17 1

Right caudate tail 19 −19 20 1
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(Figures 3 and 4). Component 3, a frontal–parietal–striatal
network (Figure 3, third row), negatively correlated with
ICR (ρ=−0.28,p=.006), as shown in Figure 4A. Conversely,
Component 9, a network incorporating the amygdala,
hippocampus, parahippocampal gyrus, posterior insula, and
superior temporal gyrus (Figure 3, bottom row), posi-
tively correlated with ICR (ρ = 0.29, p = .005; Figure 4B).
Although ICR has advantages as a DDmetric, as noted above,
it is a rather blunt measure. In contrast, the q-exponential
discount function can distinctly parameterize both Now

bias (impulsivity; kq) and the inconsistency (q) in such
Now bias across delay times in intertemporal choice tasks
(Smith et al., 2014, 2016; Takahashi, 2009; Takahashi et al.,
2008). Consistent with our prior findings (Smith et al.,
2014, 2016), ICR and kq values were very highly correlated
(ρ= 0.92, p< .001), and the relationships between kq and
Components 3 and 9 were qualitatively similar to the rela-
tionships between ICR and these components, despite re-
duced statistical power (Component 3: ρ = −0.26, p =
.067; Component 9: ρ= 0.32, p= .024). In addition to their
relationship with ICR, theWANT>CON contrast estimates
for Components 3 and 9 demonstrated a negative correla-
tion with each other (r = −0.39, p < .001; Figure 4C)
based on Pearson partial correlation controlling for age
and sex. Furthermore, the difference in activity of these
two neural systems (Component 3 minus Component 9)
explained more variance in ICR than did the activity of
either system alone (ρ = −0.34, p < .001; Figure 4D),
suggesting that their relative activity predicts individual
differences in impulsive choice.

Psychophysiological Interactions Analysis

To explore whether these two networks operate in a
competing manner during intertemporal reward choice
decision-making, we examined the task-specific functional
connectivity of Components 3 and 9 using a generalized
psychophysiological interactions (gPPI) analysis (McLaren,
Ries, Xu,& Johnson, 2012; Friston et al., 1997). As opposed to
examining the correlation of component contrast estimates

Figure 3. Spatial maps of the
seven physiologically relevant
networks identified from ICA
sorted by their relationship to
intertemporal decision-making.
Numbers at the left represent the
component number; note that
Components 1, 2, and 7 were
excluded as noise. Components
significantly activated during
intertemporal decision-making
are surrounded by a red
bounding box; significantly
deactivated components are
surrounded by a blue bounding
box. Components significantly
correlated with the ICR are
indicated with an asterisk (*).
Components are displayed
with a threshold of |z| > 1.

Table 2. Relationship of Independent Components to
Intertemporal Decision-making

Task Activation Component # t p

Positive 4 7.70 <.001

8 6.65 <.001

3 4.55 <.001

Negative 10 −10.65 <.001

6 −9.73 <.001

5 −6.33 <.001

None 9 −0.66 .51

Results from one-sample t tests of the WANT > CON contrast repre-
senting decision-making-related activation of independent compo-
nents. The reported positive and negative activations survived a false
discovery rate correction for multiple comparisons ( p < .05). Exact
p values were reported, except where p < .001.
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across participants, as presented in Figure 4C, gPPI is a
within-participant analysis that examines their correlation
across the task. Component time series were estimated
by regressing component spatial maps on each partici-
pant’s whole-brain fMRI time series data using the spatial–
temporal regression method implemented in GIFT. We

developed a GLM to estimate the task-related modula-
tion of functional connectivity between the networks.
Notably, a separate regressor is included for each task
condition. A simplified schematic of the gPPI procedure
is depicted in Figure 5. Specifically, we tested the depen-
dence of Component 3’s time series on the following

Figure 4. Scatter plots
depicting the relationships
between task-related component
activation and intertemporal
choice. (A) Scatter plot of the
relationship between the ICR
and WANT > CON contrast
estimates for Component 3.
(B) Scatter plot of the
relationship between ICR
and WANT > CON contrast
estimates for Component 9.
(C) Scatter plot of the
relationship between WANT >
CON contrast estimates
for Components 3 and 9.
(D) Scatter plot of the
relationship between ICR
and the difference in WANT >
CON contrast estimates for
Components 3 and 9. Least
squares fit lines are plotted
for visualization purposes.
Correlation coefficients
represent partial correlations
controlling for age and sex.

Figure 5. A visual representation of the gPPI analysis employed to investigate the subjective decision-making-related modulation of connectivity
between Components 3 and 9. The dependence of one time series (i.e., TS1) was predicted by the second time series (i.e., TS2), the task conditions,
the interaction of the task design and TS2, and covariates of no interest (not pictured). The task conditions modeled included subjective
decisions (i.e., WANT), objective (control, CON) decisions (i.e., SOONER, LARGER), and DON’T WANT decisions and corresponding cues for
each decision type (not pictured). Similarly, the interaction between TS2 and each task condition was modeled. The interaction beta estimates
corresponding to WANT, SOONER, and LARGER trials were used to estimate a WANT > CON contrast. Components 3 and 9 were tested as
dependent variables in two separate models.
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predictors: (1) Component 9’s time series, (2) the task
design matrix, (3) the interaction of the Component 9’s
time series and each task condition, and (4) a set of
nuisance regressors (i.e., six motion parameters, linear
and quadratic trends). Likewise, the corresponding
model in which Component 9 was similarly predicted by
Component 3 was also tested. These models were esti-
mated using the glmfit function in MATLAB R3013a, and
the β coefficients for the interaction term correspond-
ing to the WANT condition were contrasted with that of
the CON (SOONER and LARGER) trials. We took the
average WANT > CON contrast value for the two models
as an estimate of the task-dependent connectivity be-
tween Components 3 and 9. The significance of inter-
temporal decision-making-related connectivity was
calculated with one-sample t tests of gPPI contrast esti-
mates across all 95 participants, indicating a significant
negative relationship between Components 3 and 9 (t =
−3.13, p = .002).
As noted in the Introduction, an excessive tendency

to discount delayed rewards (e.g., high ICR) is associated
with alcohol and other substance use disorders. Although
this was a healthy, nonclinical sample, accumulating evi-
dence suggests that excessive DD may be a preexisting
intermediate phenotype for AUDs (Smith et al., 2015;
Anokhin, Grant, Mulligan, & Heath, 2014; Dougherty
et al., 2014; MacKillop, 2013). Therefore, we probedwhether
connectivity between these brain networks was associated
with aspects of subclinical alcohol use. Partial correlation
analyses controlling for age and sex revealed a significant
relationship between gPPI contrast estimates and the
AUDIT subscale measuring harmful alcohol use (ρ =
−0.26, p = .013), but not the subscales measuring the
quantity of alcohol consumption or alcohol dependence
symptoms ( ps > .05). The gPPI contrast estimates were
unrelated to ICR (ρ = 0.01, p = .93), however, indicating
that, although activity levels of each of these networks
during decision-making predict impulsive choices, the
connectivity between them does not.

DISCUSSION

This study utilized a novel approach to identify neural
networks associated with individual differences in im-
mediate reward selection bias in healthy adults. An
ICA-based approach revealed two components of activa-
tion during intertemporal choice that associated with
ICR: A network of brain regions including the medial-
temporal lobe, insula, and superior temporal gyrus was
associated with greater impulsivity, whereas a network
encompassing striatal, frontal, and parietal brain regions
was associated with less impulsive choice behavior. Activity
within these two networks was inversely correlated dur-
ing decision-making, and task-dependent decreases in
connectivity between these networks indicate that these
brain regions functionally compete during intertemporal
choice.

Consilience with Existing DD
Neuroimaging Literature

The independent component (3) whose activity during
intertemporal decision-making was negatively correlated
with ICR (Figure 4A) incorporated many brain regions
previously proposed to comprise a cognitive control sys-
tem central to favoring selection of delayed rewards. For
example, McClure and colleagues (2004) reported en-
hanced activity in a constellation of areas with remarkable
spatial similarities with Component 3, including the bilat-
eral posterior parietal cortex, right dorsolateral and ven-
trolateral pFC, and right inferior frontal cortex/anterior
insula, when participants opted for larger, later rewards
(McClure et al., 2004). Several studies have also identified
similar activity related to DD in brain regions correspond-
ing to a right-lateralized frontal–parietal network (Stanger
et al., 2013; Bickel et al., 2009; Xu, Liang, Wang, Li, &
Jiang, 2009; Boettiger et al., 2007; Monterosso et al.,
2007), whereas others emphasize the role of the left lat-
eral pFC in overriding impulsive choices (Figner et al.,
2010; Hare, Camerer, & Rangel, 2009). Notably, Compo-
nent 3 also incorporates substantial activity in the dorsal
and ventral striatum, regions implicated in reward-based
decision-making processes (Balleine, Delgado, & Hikosaka,
2007; Kable & Glimcher, 2007). The association of less
activity within this component with more impulsive choices
supports the contention that impulsive choice behavior is
related to diminished influence of executive control mech-
anisms, which override the tangible value of immediate re-
wards to enable the choice of less tangible but larger
delayed rewards (Rick & Loewenstein, 2008). The lateral
frontal, anterior cingulate, and parietal regions of the Com-
ponent 3 network (Figure 3) correspond closely with a pre-
viously described working memory network (Zurowski
et al., 2002). Notably, working memory training has been
shown to decrease DD rates (Bickel, Yi, Landes, Hill, &
Baxter, 2011), suggesting possible shared neural substrates
for intertemporal choice and working memory processes.
Cognitive control may enable prospective processes to
“find” and value delayed rewards (Kurth-Nelson, Bickel, &
Redish, 2012; Benoit, Gilbert, & Burgess, 2011; Peters &
Buchel, 2010; Rick & Loewenstein, 2008). The recent dem-
onstration that a network of lateral prefrontal, dorsomedial
prefrontal, and parietal brain regions converts subjective
value information from value-encoding regions into actual
choices is consistent with this idea (Rodriguez, Turner,
Van Zandt, & McClure, 2015). Building on these theories,
we propose that engagement of this network may reflect
a strategy of utilizing approximate mathematical computa-
tions to evaluate choices based on delay interval and ob-
jective value of reward options (Arsalidou & Taylor, 2011;
Fehr, Code, & Herrmann, 2007).

In contrast to Component 3, described above, Compo-
nent 9 incorporated activations in the amygdala, hippo-
campus, parahippocampal gyrus, posterior insula, and
superior temporal gyrus (Figure 3). This set of brain
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regions has been implicated in such processes as mem-
ory, emotion, visceral responses, and reward motivation
(Gottfried, O’Doherty, & Dolan, 2003). The association be-
tween greater activity within this network and greater DD
suggests that reliance on affective processes in decision-
making biases choices toward the immediate reward
(Gupta, Koscik, Bechara, & Tranel, 2011; Bechara, 2005).
In other words, activation of this component may reflect
a decision-making strategy in which visceral responses to
reward choices guide behavior, consistent with Compo-
nent 9’s incorporation of posterior insula and amygdala
activations (Bechara, Damasio, & Damasio, 2003; Craig,
2002). The role of the medial-temporal lobe regions in
intertemporal choice has alternatively been proposed
as supporting episodic prospection (Benoit et al., 2011;
Peters & Buchel, 2010; Winstanley, Theobald, Cardinal,
& Robbins, 2004). Our finding that greater activity in
Component 9 was associated with more impulsive decision-
making seems to be in conflict with this hypothesis; how-
ever, imagining future outcomes may be more closely
related to the functional connectivity between prefrontal
andmedial-temporal lobe regions (Benoit et al., 2011; Peters
& Buchel, 2010).

Competing Networks Engaged during
Subjective Choice

The relative balance of activity between a putative
frontoparietal–striatal “control” network and a putative
medial-temporal and insula “impulsive” network predicted
individual differences in intertemporal choice behavior.
Furthermore, these networks demonstrated inversely
related activity across participants and decreased connec-
tivity across decision-making trials. These relationships sug-
gest that these networks may operate competitively in
influencing choice behavior. The relative activation of
these anticorrelated networks may not determine choice
behavior per se but rather indicate individual differences
in neural strategies engaged to make intertemporal reward
decisions. The functional relevance of the anticorrelated
nature of these systems was further highlighted by the neg-
ative relationship between gPPI estimates and a measure of
alcohol-related harm (i.e., negative consequences of drink-
ing). This relationship suggests that subclinical hazardous
alcohol use is associated with the reliance on a single
neural system while making decisions, which may reflect
a deficit in the integration of information across systems.

Other Networks Engaged during
Intertemporal Choice

Along with Component 3, the activity of which predicted
individual differences in DD, Components 4 and 8 were
also significantly active across individuals during inter-
temporal choice. Component 4 has a high spatial corre-
spondence to the well-studied “default mode network”
(Raichle et al., 2001), with activations focused in the

posterior cingulate cortex; this network is involved in
prospection, and activation in these regions is proposed
to represent temporal delays (Luhmann, Chun, Yi, Lee, &
Wang, 2008). In contrast, Component 8 contains medial
prefrontal and anterior insula activations consistent with
the proposed “salience network” (Seeley et al., 2007);
however, its focus in the medial pFC is consistent with
its potential involvement in subjective reward valuation
in which the relative values of the reward choices are in-
tegrated in a single system (Wang et al., 2014; van den
Bos & McClure, 2013; Monterosso & Luo, 2010; Kable
& Glimcher, 2007). It is noteworthy that neither of these
components demonstrated a relationship with individual
differences in ICR, indicating that these networks are
activated regardless of whether participants tend to select
immediate or delayed rewards more frequently.

Intertemporal Choice Networks and Substance
Use Disorders

As elevated DD is linked extensively with substance use
disorders (MacKillop et al., 2011; Monterosso et al., 2007;
Reynolds, 2006; Kirby & Petry, 2004; Dixon et al., 2003;
Bickel et al., 1999; Kirby et al., 1999; Becker & Murphy,
1988), alterations in neural networks predicting individual
differences in intertemporal decision-making represent
potential biomarkers of alcohol and other substance use
disorders. Neurocognitive impairments associated with
addictive disorders are related to functional deficits in
frontal cortical regions consistent with parts of Compo-
nent 3 in the current study (Lundqvist, 2010; Hoffman
et al., 2008; Hester & Garavan, 2004; Bolla et al., 2003).
Drug-dependent individuals also demonstrate altered
striatal responses to reward (Volkow et al., 2010; Kalivas
& Volkow, 2005; Kreek & Koob, 1998), further implicating
the network represented by Component 3 in addiction-
related processes. In addition, drug craving elicited by
stress or drug cues is associated with increased activity
in the limbic and paralimbic regions included in Compo-
nent 9 (Potenza et al., 2012; Kilts et al., 2001; Garavan
et al., 2000). Moreover, impulsive behavior associated
with drug addiction has been attributed to impairment
in executive control over impulsive processes related to
motivation for immediate rewards (Peters & Büchel,
2011; Bechara, 2005), suggesting that interactions be-
tween executive and motivational systems may be partic-
ularly disrupted in addictive disorders. Furthermore, DD
processes are more directly implicated in drug use behav-
ior by data demonstrating that heightened DD among
addicts is associated with poorer treatment outcomes
(Stanger et al., 2011; Washio et al., 2011). DD among
drug-dependent individuals can be reduced by working
memory training (Bickel et al., 2011), suggesting that
improving frontal–parietal network functioning and in-
creasing cognitive control have potential as therapeutic
strategies for improving substance use outcomes (Leeman,
Bogart, Fucito, & Boettiger, 2014; Boettiger et al., 2009).
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However, the extent to which changes in these networks
influence addiction processes remains to be tested.

Limitations

We acknowledge several limitations of this study. First,
the ICR values for seven participants fell at either extreme
(i.e., 0 or 1), suggesting that the choices offered in the
task were not sufficiently challenging for all participants.
Furthermore, the truncated distribution may have limited
our power to detect significant correlations with ICR. In
addition, because the difficulty of choice options was not
controlled across individuals, some individual differences
in neural activity during choice could be driven by differ-
ences in the recruitment of decision-making processes,
rather than differences in subjective valuation of immedi-
ate versus delayed rewards. Finally, this study included
both men and women, and sex steroids differences have
been linked to differences in DD behavior (Smith et al.,
2014; Peper et al., 2013; Bobova, Finn, Rickert, & Lucas,
2009). Although our analyses controlled for sex and we
identified no significant sex effects in our analyses, future
studies should consider how the neural correlates of im-
pulsive choice may differ between men and women.
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